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Fig. 2. (a) Time dependent voltage across a diode at the end of a trans-
mission line. Solid: Ideal analytically integrated voltage. Dashed: PISCES
integrated voltage, including external displacement current effects. (b) Devi-
ation: Vprsoes — Videat = VV.

the end of the line, and evaluated for 150 usec. The solid line in
Fig. 2(a) shows the resultant voltage across the diode. The signal is
properly clipped at positive voltages when the diode is conducting.

Next, we used (5), and our abrupt-start trick to calculate V(%)
and E§m+1) from PISCES. We plot the resultant diode voltage for the
same sinusoidal input as the dashed curve in Fig. 2(a). Fig. 2(b) shows
that the deviation from ideal is small, validating the new approach.
The PISCES approach is, of course, much more general, and can
be used with higher frequency input to calculate the net transient
response of the coupled transmission line and device.

III. CONCLUSION

We have shown how a direct integration approach for simple
lumped elements can improve the numerical properties of models
employing FDTD analysis. More significantly, we have developed a
noninvasive procedure by which standard PISCES-like software can
be combined with FDTD to model the coupled internal dynamics of
devices with external electromagnetics.
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On the Time Step in Hybrid
Symmetrical Condensed TLLM Nodes

Vladica Trenkic, Christos Christopoulos, and Trevor M. Benson

Abstract— New formulas for the maximum permissible time step in
TLM hybrid nodes modeling anisotropic media are introduced and
analyzed. It is shown that the value of the time step in most cases can
be higher than that suggested by the minimum node dimension. The
chosen value of the time step has significant impact on the dispersion
characteristics of the hybrid symmetrical condensed node.

1. INTRODUCTION

The hybrid symmetrical condensed node (HSCN) for the TLM
method was originally described in [1]. Further generalizations of
this node and a complementary HSCN were recently proposed
in [2]. In the original HSCN [1], referred to as Type I in [2],
all required inductances are modeled in the transmission lines,
while open-circuit stubs are used to make up for any deficit in
capacitances. A complementary Type II HSCN introduced in [2]
models extra capacitances by altering the characteristic impedances
of transmission-lines and uses short-circuit stubs to make up for any
deficit in inductances.

The HSCN can operate with a larger time step than the stubbed
SCN [3] due to the fact that the time step is not strictly dependent
on the ratio of the largest to the smallest node dimension. Some con-
siderations and comparisons of the maximum time step in the HSCN
modeling isotropic media are given in [4], [5]. In the formulation
of the HSCN for anisotropic media [2], the time step was related to
the smallest mesh dimension Al as At = Al/(2c). However, the
maximum permissible time step was not defined.

In this paper we introduce the complete formulation for the
maximum time step allowed in the HSCN for modeling anisotropic
materials, based on the condition that characteristic admittances of
the stubs must. be nonnegative when modeling a passive medium [6].
We show that in most cases the value of the time step can be higher
than that stated in [2]. Moreover, we demonstrate that dispersion
characteristics of the HSCN are dependent on the chosen time step.

II. MaxiMum TmME STEP FOR HSCN

Contrary to the derivations in [1] and [2] where normalized
characteristic admittances of stubs are given in terms of the smallest
node dimension A/, derivations in [5] are given directly in terms of
the time step At. For an isotropic medium with electrical parameters
£r, t» and a node with dimensions Az, Ay, Az, the normalized
stub characteristic admittances for the Type I HSCN are given as [5]
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where ¢ = 1/,/foco.

For an anisotropic medium described by diagonal tensors as in [2],
the normalized characteristic admittances of the open-circuit stubs
can be expressed in terms of the time step At as

2. AYyAz  deAT Ay Az
Yo, = - -
© cAtAx Ar (pyy,,«A: + ;tzz,TAy> @
_ 2eyy  AzAx 4deAt Az Az
You=" AtAy Ay ponde T paaz) @
2., rAxzAy  4cAt Az Ay
Yo, = - — .
? cAtAz Az (uz”ag + Myy,ram) ©®

If the time step At is related to the smallest node dimension Al,
as At = Al/(2¢), then formulas (1)~(3) and (4)~(6) can be rewritten
in the forms given in [1] and [2], respectively.

However, there is no particular reason for the time step to be related
to the smallest node dimension. The only condition which must be
met in formulating the characteristic admittances of the stubs when
modeling a passive medium is that these admittances are nonnegative
[6]. Hence the value of A¢ must be chosen such that none of the
characteristic admittance of the stubs becomes negative. Applying the
conditions Yo, > 0. Yo, > 0, Yo, > 0, it follows from (4)—(6) that

1 261‘1‘,7’
At <5 \ﬂ/[ﬂz;,rmw] a0
As <i 2eyy.r ®)
- 26 1/[“rzr(A:)2] + 1/[MZZ~T(A'T)2]
1 Qﬁz:,r
At <5 \/1/[ﬂyy,r(A£)2] + 1/ [peer (AY)?] ©

In general, to find the maximum time step for a TLM mesh,
conditions (7)—(9), must be applied to all nodes throughout the mesh
and the smallest time step found is the one that can be used.

The definitions of the normalized characteristic admittances in
terms of Al given in [1] and [2] can be readily used with an arbitrary
time step Af¢ which satisfies relations (7)~9). In this case, Al,
defined as Al = 2cAt, would be regarded as an equivalent cubic
cell parameter, defined as the dimension of a cubic cell having the
same propagation delay At as an arbitrarily graded TLM cell [7].

It can be easily confirmed that formulas (7)--(9) are also valid for
the type I HSCN [2], provided one substitutes < for y and vice versa.

III. ANALYSIS OF THE EXPRESSIONS FOR THE MAXIMUM TIME STEP

We analyze expressions (7)—(9) in some detail for different mesh
gradings and different media. For all cases, Al is regarded as the
smallest node dimension, while Atg, defined as Atg = Alf2c, is
regarded as the time step related to the smallest node dimension. Let
us recall that the time step for the uniform 3-D TLM mesh with node
spacing Al is given as At = Al/2¢ [3].

A. Homogeneous Isotropic Medium

We first analyze cases modeling a homogeneous isotropic medium
with background properties €,-.r = Syyr = €iap = fozr =
Pyyr = faze = L
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Fig. 1. Normalized maximum time step in an isotropic medium as a function
of node aspect ratio.

Case hl: Two dimensions are the same and the third is bigger,
e.g., Az = Ay = Al, Az > Al. The inequality (9) must be used,
leading to

Al

Afmax = . 1
% (10)

Thus, for this case, the maximum time step Atmax iS the same as
that related to the smallest node dimension, Atg.

Case h2: Two dimensions are the same and the third is smaller,
e.g, Ar = Ay = Am > Al, Az = Al. The inequality (7) or (8)
must be used, leading to

1 2 Al
Abpax = =— -
max = 50 \/1/(Am)2+1/(AZ)2 T an
When Al € Am, the maximum time step becomes
/
Atmax & :&lﬁ. 12)
2c

Case h3: All dimensions are different, Al = Ai < Aj < Ak,
where i, j,k € {r,y,z}. If (7.j.k) = (x,y, =), the inequality (9)
must be used, leading to

Atmax - (13)

1 2 Al
2\ /A7 1Ay~ 26

From the Cases h1-h3 it can be scen that for any type of grading,
the maximum permissible time step A¢pax lies within the limits

ﬂ < Atmax < i\/g (14)
2c 2c
which can also be expressed in terms of Atg
Aty < Atmay < AtgV/2. (15)

This was also noted in [5]. Practically this means, that in some cases
the time step can be chosen to be up to /2 times. higher than one
related to the smallest node dimension.

Cases h1-h3 are illustrated graphically in Fig. 1. The ratio 5
between the maximum permissible time step Atmax, as defined by
formulas (7)—(9), and the time step Aty related to the smallest node
dimension is plotted against the aspect ratio 3 of the dimensions Ay
and Az. An increase in 3 can be interpreted as a decrease in Az,
whereas Ay and A remain constant. Note that /3 is presented on a
logarithmic scale in Fig. 1.

Cases hl and h2 (Ay = Ax) appear in Fig. 1 as the solid Jine.
For 3 < 1, i.e, Az > Ay, Case hl applies and the ratio » remains
unchanged and equal to unity. When S > 1, Case h2 applies and
the time steps ratio increases up to n = V2. Case h3 is represented
by the broken line in Fig. 1, for the example chosen Ay = 2Aux.
Only at one point, when 3 = 2, i.e., Az = Az, does the maximum
permissible time step, Afmax, equal Ao, Otherwise, when 5 < 1,
formula (9) applies leading to = \/m ~1.26, whereas when
B8 — oo, formula (8) applies leading to n — V2.
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Fig. 2. Normalized maximum time step in anisotropic PTFE as a function
of node aspect ratio.

B. Inhomogeneous Isotropic Media

When modeling inhomogeneous isotropic microwave circuits con-
taining regions of different permeabilities and permittivities, €5, =
Eyy,r = Ereyr = Sr AN Yoo = Pyy,r = fes,r = fr, tWO CaSES
can be considered.

Case il: Grading ratio over different media is identical. In this
case, it can be seen from formulas (7)—(9) that media with higher
electrical and magnetic properties allow higher time steps, but the one
related to the medium with the lowest permittivity and permeability
(usually chosen as the background medium) must be used. Therefore,
the analysis performed for the homogeneous Cases h1-h3 is valid for
this inhomogeneous case too.

Case i2: Grading ratio over different media is different. In this
case, full analysis of the permissible time steps for all node regions
must be performed. It can be easily confirmed that the time step
can always be chosen so as to be related to the smallest mesh
dimension applied to the background medium parameters, but the
actual configuration of the mesh might allow the use of a higher time
step value.

C. Anisotropic Media

When modeling anisotropic materials, the analysis of the formulas
(7)—(9) becomes more complex, so we only give an example for a
material commonly used in microwave circuits, namely PTFE, with
Exu,r = 2.95, &yy,r =2.89, and €., =2.45 [8]. The time step At is
related to the smallest node dimension and the lowest electromagnetic

parameters as
Al :
Ato = 5=\ /min (v, 1))

where i,j € {r,y,z}. For the example of PTFE, plotted in Fig.
2, Ato = Al /2277 /(2c). When 3 — oo, inequality (8) applies,

leading to n — /2eyy.r/Erxr ~1.536.

(16)

IV. ImpACT ON THE DISPERSION CHARACTERISTICS

The relative propagation error for the HSCN is investigated for
different values of time step by solving the general dispersion relation
for the TLM SCN [9], with modifications to account for stubs [10].

An example corresponding to Case h2, similar to that in [11], with
Ar = 2Ay = Az and a homogeneous medium (s, = p, = 1), is
considered for propagation along the coordinate plane z = 0. Fig. 3
shows the relative propagation error §% [11] in the HSCN operating
on different time step values, calculated for the spatial discretization
of Ax/X = 0.1 and plotted as a function of the angle o between
the propagation vector % and y-axis defined by a = arctan (ke /ky).
Note that two solutions of the general dispersion relation for the
HSCN appear [10], [11]. Fig. 3 shows that the range of propagation
error is the smallest when using the maximum time step Aax.
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Fig. 3. Relative propagation error for different time steps and grading set
at Ar = 2Ay = Az,

V. CONCLUSION

It was shown that the value of the time step is not strictly dependent
on the ratio of the smallest to the biggest node dimension as in
the stubbed SCN, neither has it to be related to the smallest node
dimension as described in [2]. New formulas for the allowable time
steps were introduced for modeling general media using the HSCN
and analyzed thoroughly for different problems. It was shown that
in some isotropic cases the time step can be chosen to be up to /2
higher than that related to the smallest node dimension. In the case
of anisotropic media this value can be even higher, depending on
the material properties in the principal directions. It was shown that
the dispersion characteristics of the HSCN are dependent on the time
step value used in the mesh and that the maximum allowable time
step for the HSCN yields the smallest range of propagation errors.
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