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Fig. 2. (a) Time dependent voltage across a diode at the end of a trans-
mission line. Solid: Ideal analytically integrated voltage. Dashed: PISCES
integrated voltage, including external displacement current effects. (b) Devi-
ation: J’pIscES — VLdea~ = VV.

the end of the line, and evaluated for 150 &sec. The solid line in

Fig. 2(a) shows the resultant voltage across the diode. The signal is

properly clipped at positive voltages when the diode is conducting.

Next, we used (5), and our abrupt-start trick to calculate V(m+~)

and 11~~+1) from PISCES. We plot the resultant diode voltage for the

same sinusoidal input as the dashed curve in Fig. 2(a). Fig. 2(b) shows

that the deviation from ideal is small, validating the new approach.

The PISCES approach is, of course, much more general, and can

be used with higher frequency input to calculate the net transient

response of the coupled transmission line and device.

III. CONCLUSION

We have shown how a direct integration approach for simple

lumped elements can improve the numerical properties of models

employing FDTD analysis. More significantly, we have developed a

noninvasive procedure by which standard PISCES-like software can

be combined with FDTD to model the coupled internal dynamics of

devices with external electromagnetic.
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On the Time Step in Hybrid

Symmetrical Condensed TLM Nodes

Vladica Ttmkic, Christos Christopotdos, and Trevor M. Benson

Abstract— New formulas for the maximum permissible time step in
TLM hybrid nodes modeling anisotropic media are introduced and

analyzed. It is shown that the value of the time step in most cases can

be higher thaur that suggested by the miuimum node dimension. The
chosen value of the time step has significant impact on the dispersion

characteristics of the hybrid symmetrical condensed node.

I. INTRODUCTION

The hybrid symmetrical condensed node (HSCN) for the TLM

method was originally described in [1]. Further generalizations of

this node and a complementary HSCN were recently proposed

in [2]. In the original HSCN [1], referred to as Type I in [2],

all required inductances are modeled in the transmission lines,

while open-circuit stubs are used to make up for any deficit in

capacitances. A complementary Type II HSCN introduced in [2]

models extra capacitances by altering the characteristic impedances

of transmission-lines and uses short-circuit stubs to make up for any

deficit in inductances.

The HSCN can operate with a larger time step than the stubbed

SCN [3] due to the fact that the time step is not strictly dependent

on the ratio of the largest to the smallest node dimension. Some con-

siderations and comparisons of the maximum time step in the HSCN

modeling isotropic media are given in [4], [5]. In the formulation

of the HSCN for anisotropic media [2], the time step was related to

the smallest mesh dimension Al as At = Al/ (2c). However, the

maximum permissible time step was not defined.

In this paper we introduce the complete formulation for the

maximum time step allowed in the HSCN for modeling anisotropic

materials, based on the condition that characteristic admittances of

the stubs must be nonnegative when modeling a passive medium [6].

We show that in most cases the value of the time step can be higher

than that stat~d in [2]. Moreover, we demonstrate that dispersion

characteristics of the HSCN are dependent on the chosen time step.

II. MAXIMUM TIME STEP FOR HSCN

Contraty to the derivations in [1] and [2] where normalized

characteristic admittances of stubs are given in terms of the smallest

node dimension Al, derivations in [5] are given directly in terms of

the time step At.For an isotropic medium with electrical parameters

~,, p, and a node with dimensions Ax, Ay, Az, the normalized

stub characteristic admittances for the Type I HSCN are given as [5]
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For an anisotropic medium described by diagonal tensors as in [2],

the normalized characteristic admittances of the open-circuit stubs

can be expressed in terms of the time step At as

Y.. = 2’:&$’ - g $.+ ~) (4)

( ,-- . . .

Yov =
2&~g,,AzAx

(

4cAt Az Ax
—+—

)
(5)

cAtAy – Ay vzz,r Ax Pzz%r~~

(

~ro= = 2zzz,rAxAtI ~::t Ax / AY
cAtAz W..,r AY )vvu,rAx “ ‘6)

If the time step At is related to the smallest node dimension Al.

as At = Al/ (2c), then formulas (l)–(3) and (4)–(6) can be rewritten

in the forms given in [1] and [2], respective] y.

However, there is no particular reason for the time step to be related

to the smallest node dimension. The only condition which must be

met in formulating the characteristic admittances of the stubs when

modeling a passive medium is that these admittances are nonnegative

[6]. Hence the value of At must be chosen such that none of the

characteristic admittance of the stubs becomes negative. Applying the

conditions Yoc ~ O. Yog ~ O, Yo, ~ O, it follows from (4)–(6) that

1

/

2EZZ,V

‘t ‘~ l/[IL9v,.(Ax)2] + li[$~zz,,(~y)’]’
(9)

In general, to find the maximum time step for a TLM mesh,

conditions (7)–(9), must be applied to all nodes throughout the mesh

and the smallest time step found is the one that can be used.

The definitions of the normalized characteristic admittances in

terms of AZ given in [1] and [2] can be readily used with an arbitrary

time step At which satisfies relations (7)–(9). In this case, Al,

defined as Al = 2cAt, would be regarded as an equivalent cubic

cell parameter, defined as the dimension of a cubic cell having the

same propagation delay At as an arbitrarily graded TLM cell [7].

It can be easily confirmed that formulas (7)-(9) are also valid for

the type II HSCN [2], provided one substitutes ~ for w and vice versa.

III. ANmYSIS OF THE EXPRESSIONSFOR THE MAXIMUM TIME STEP

We analyze expressions (7)–(9) in some detail for different mesh

gradings and different media. For all cases, At is regarded as the

smallest node dimension, while Ato, defined as Ato = A1/2c, is

regarded as the time step related to the smallest node dimension. Let

us recatl that the time step for the uniform 3-ID TLM mesh with node

spacing Al is given as At = A1/2c [3].

A. Homogeneous Isotropic Medium

We first analyze cases modeling a homogeneous isotropic medium

with background properties cz~,, = ZVY,, = ~,,,~ = p.=,, =

&VYl. = /l..,. = 1
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Fig. 1. Normalized maximum time step in an isotropic medium as a function
of node aspect ratio.

Case M: Two dimensions are the same and the third is bigger,

e.g., Ax = Ay = Al, AL > Al. The inequality (9) must be used,

leading to

Al
Atm., = —.

2C
(10)

Thus, for this case, the maximum time step At~,x is the same as

that related to the smallest node dimension, Ato.

Case h2: Two dimensions are the same and the third is smaller,

e.g., A.E = Ay = Am > Al, A: ❑= Al. The inequality

must be used, leading to

Atmax= ;

/

2 Al

l/( Am)’~ + l/(Al)2 > -X”

When Al << Am, the maximum time step becomes

Al A
At

‘ax=-2c “

(7) or (8)

(11)

(12)

Case h3: All dimensions are different, Al = Ai < Aj < Ak,

where i, j, k c {x, y, z}. If (i,.j. k) = (z-, y, =), the inequality (9)

must be used, leading to

/
Atm.x= & — 2 Al

l/(Ax)2 + l/(Ay)2 > ~“
(13)

From the Cases hl–h3 it can be seen that for any type of grading,

the maximum permissible time step Atm.. lies within the limits

(14)

which can also be expressed in terms of AtO

AtO s At~a, < Ato d. (15)

This was also noted in [5]. Practically this means, that in some cases

the time step can be chosen to be up to W times, higher than one

related to the smallest node dimension.

Cases hl–h3 are illustrated graphically in Fig. 1. The ratio ~

between the maximum permissible time step At~~~, as defined by

formulas (7)–(9), and the time step Afo related to the smallest node

dimension is plotted against the aspect ratio 13of the dimensions Ay

and A z. An increase in P can be interpreted as a decrease in A z,

whereas Ay and Ax remain constant. Note that 15is presented on a

logarithmic scale in Fig. 1.

Cases hl and h2 (AY = Ax) appear in Fig. 1 as the solid line.

For 1? <1, i.e., A= > Ay, Case hl applies and the ratio v remains

unchanged and equal to unity. Wlmn 13 > 1, Case h2 applies and

the time steps ratio increases up to q = @. Case h3 is represented

by the broken line in Fig. 1, for the example chosen A y = 2Ax.

Only at one point, when /3 = 2, i.e., k = A.r, does the maximum

permissible time step, Af~ax, equal Ato. Otherwise, when /j < 1,

formula (9) applies leading to q == @ %1.26, whereas when

9 + ~, formula (8) applies leading to q + @.
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Fig. 2. Normalized maximum time step in anisotropic PTFE as a function
of node aspect ratio.

B. Inhomogeneous Isotropic Media

When modeling inhomogeneous isotropic microwave circuits con-

taining regions of different perrneabilities and permittivities, e..,, =

EYY,, = Ezz,r = z, and p..,. = PVY,, = p~;,, = p,, two cases
can be considered.

Case il: Grading ratio over different media is identical. In this

case, it can be seen from formulas (7)–(9) that media with higher

electrical and magnetic properties allow higher time steps, but the one

related to the medium with the lowest permittivity and permeability

(usually chosen as the background medium) must be used. Therefore,

the analysis performed for the homogeneous Cases hl–h3 is valid for

this inhomogeneous case too.

Case i2: Grading ratio over different media is different. In this

case, full analysis of the permissible time steps for all node regions

must be performed. It can be easily confirmed that the time step

can always be chosen so as to be related to the smallest mesh

dimension applied to the background medium parameters, but the

actual configuration of the mesh might allow the use of a higher time

step value.

C. Anisotropic Media

When modeling anisotropic materials, the analysis of the formulas

(7)-(9) becomes more complex, so we only give an example for a

material commonly used in microwave circuits, namely PTFE, with

cLZ,, = 2.95 , SYv,r =2.89, and cz,,r =2.45 [8]. The time step At. is

related to the smallest node dimension and the lowest electromagnetic

parameters as

‘to=wz-==

(16)

where i, j’ c {r, y, z}. For the example of PTFE, plotted in Fig.

2, At” = AIG/ ( 2c). When ~ + cm, inequality (8) applies,

leading to ~ ~ {~ x1.536.

IV. IMPACT ON THE DISPERSION CHARACTERISTICS

The relative propagation error for the HSCN is investigated for

different values of time step by solving the general dispersion relation

for the TLM SCN [9], with modifications to account for stubs [10].

An example corresponding to Case h2, similar to that in [1 1], with

Ax = 2Ay = Az and a homogeneous medium (c. = ~, = 1), is

considered for propagation along the coordinate plane z = O. Fig. 3

shows the relative propagation error tik [11] in the HSCN operating

on different time step values, calculated for the spatial discretization

of Ax/A = 0.1 and plotted as a function of the angle CEbetween

the propagation vector ~ and y-axis defined by @ = arctan (k. /kU ).

Note that two solutions of the general dispersion relation for the

HSCN appear [10], [1 1]. Fig. 3 shows that the range of propagation

error is the smallest when using the maximum time step Atm.X.

‘:m0 15 30 45 60 75 90

. (?

Fig. 3. Relative propagation error for different time steps and grading set
at Ax = 2A.v = Az.

V. CONCLUSION

It was shown that the value of the time step is not strictly dependent

on the ratio of the smallest to the biggest node dimension as in

the stubbed SCN, neither has it to be related to the smallest node

dimension as described in [2]. New formulas for the allowable time

steps were introduced for modeling general media using the HSCN

and analyzed thoroughly for different problems. It was shown that

in some isotropic cases the time step can be chosen to be up to W

higher than that related to the smallest node dimension. In the case

of anisotropic media this value can be even higher, depending on

the material properties in the principal directions. It was shown that

the dispersion characteristics of the HSCN are dependent on the time

step value used in the mesh and that the maximum allowable time

step for the HSCN yields the smallest range of propagation errors.
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